On Some Stratifications of Affine Deligne-lusztig Varieties for Sl3

نویسنده

  • BORIS ZBARSKY
چکیده

Let L := k̄((ǫ)), where k is a finite field with q elements and ǫ is an indeterminate, and let σ be the Frobenius automorphism. Let G be a split connected reductive group over the fixed field of σ in L, and let I be the Iwahori subgroup of G(L) associated to a given Borel subgroup of G. Let f W be the extended affine Weyl group of G. Given x ∈ f W and b ∈ G(L), we have some subgroup of G(L) that acts on the affine Deligne-Lusztig variety Xx(b) = {gI ∈ G(L)/I : gbσ(g) ∈ IxI} and hence a representation of this subgroup on the Borel-Moore homology of the variety. This dissertation investigates this representation for certain b in the cases when G = SL2 and G = SL3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formulas for the dimensions of some affine Deligne-Lusztig Varieties

Rapoport and Kottwitz defined the affine Deligne-Lusztig varieties X w̃ (bσ) of a quasisplit connected reductive group G over F = Fq((t)) for a parahoric subgroup P . They asked which pairs (b, w̃) give non-empty varieties, and in these cases what dimensions do these varieties have. This paper answers these questions for P = I an Iwahori subgroup, in the cases b = 1, G = SL2, SL3, Sp4. This infor...

متن کامل

Affine Deligne–lusztig Varieties at Infinite Level (preliminary Version)

Part 1. Two analogues of Deligne–Lusztig varieties for p-adic groups 5 2. Affine Deligne–Lusztig varieties at infinite level 5 2.1. Preliminaries 5 2.2. Deligne–Lusztig sets/varieties 7 2.3. Affine Deligne–Lusztig varieties and covers 8 2.4. Scheme structure 9 3. Case G = GLn, b basic, w Coxeter 12 3.1. Notation 12 3.2. Basic σ-conjucacy classes. Isocrystals 12 3.3. The admissible subset of Vb ...

متن کامل

Affine Deligne-lusztig Varieties in Affine Flag Varieties

This paper studies affine Deligne-Lusztig varieties in the affine flag manifold of a split group. Among other things, it proves emptiness for certain of these varieties, relates some of them to those for Levi subgroups, extends previous conjectures concerning their dimensions, and generalizes the superset method.

متن کامل

The Dimension of Some Affine Deligne-lusztig Varieties

We prove Rapoport’s dimension conjecture for affine Deligne-Lusztig varieties for GLh and superbasic b. From this case the general dimension formula for affine DeligneLusztig varieties for special maximal compact subgroups of split groups follows, as was shown in a recent paper by Görtz, Haines, Kottwitz, and Reuman.

متن کامل

Connected Components of Closed Affine Deligne-lusztig Varieties

We determine the set of connected components of closed affine Deligne-Lusztig varieties for special maximal compact subgroups of split connected reductive groups. We show that there is a transitive group action on this set. Thus such an affine Deligne-Lusztig variety has isolated points if and only if its dimension is 0. We also obtain a description of the set of these varieties that are zero-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009